Search

homeschoolsciencegeek

Secular Science Resources for Homeschoolers

Month

February 2018

R2 Physics 23 – Magnets

For this week, students were asked to read Chapter 11.1 Household Magnets in How Thinks Work, the Physics of Everyday Life, and watch the following video by minutephysics.

I also reminded students they could be reading the Cartoon Guide to Physics, Chapters 12-19 for electricity and magnetism.

I started class with a bit of lecture about the previous chapter on electricity and then some on magnetism and how its similar (likes repel, opposites attract and the force depends strongly on distance) and how its different (you can have a postive charge all by itself, but so its impossible to have just a north pole, or just a south pole, they always come in pairs).

There were four activities involving magnets and magnetic fields for the lab.  1)  Use magnetic filings to observe and sketch the magnetic field lines of various magnets.IMG_5019

2) Build an electromagnet – wrap wire around an iron nail and then attach the wire to a battery and see if you can pick up paper clips with your electromagnet.  When students disconnect the battery the paper clips fall off the nail since its no longer magnetized.IMG_5006

3) Play Jishaku, a game where the first one to get rid of all their magnetic rocks win.  Students take turn placing the rocks in the blue foam pictured below.  The rocks are fairly strong magnets so if they are close enough the force between them will be strong enough to make them leap together.  If the rocks come together then you add them back to your hand.IMG_5002

4) Play with Magic Penny Magnet Kit and the bottle of ferromagnetic fluid.  The Magic Penny kit comes with two strong magnets (the silver bar below), some UK pennies and a book of tricks you can do with them.IMG_5015

I also showed the students an app, phET Interactive Simulations that is available on the App Store or Google Play and you can play with the simulations on your computer via a web browser.  They have a number of nice ones for electricity, including John Travoltage, Balloons and Static Electricity, Charges and Fields, Ohm’s Law, etc.  Its worth checking it out.  These simulations give students a way to ‘see’ and play with charges and fields and concepts that can be hard to get across since they aren’t easily visible. balloon phet

 

SaveSaveSaveSave

SaveSaveSaveSave

Advertisements

SF Physics 19 – Electromagnetic waves

We started the unit on Light (Science Fusion Module J) today with a slide show on the electromagnetic spectrum.  I actually found this slideshow (below), which I think may have been a student’s assignment and showed parts of it to my class as we talked about the spectrum.  I really stressed how these visible light, X-ray, radio waves, etc are all the same thing, and just have different wavelengths and frequencies.  I spent quite a bit of time discussing how the longer wavelengths means a lower frequency and shorter wavenlengths have a higher frequency but they are all traveling at the same speed, the speed of light.

We also watched this video, What is Light? by Kurzgesagt – In a Nutshell.

I have two simple spectrometers that came with a spectroscope analysis kit (one came with the kit and I bought an extra one) and had students look at red and blue LED lights (Light Blox light sources) and read off the wavelength of the light.  I also made the different colored flames with the different salts (potassium chloride, cupric chloride, lithium chloride, etc most of which come in the spectroscope analysis kit).

IMG_4995

IMG_4997
View inside the spectroscope shows the red light is roughly 650 nm.

When using the spectroscope to look at white lights or sun light reflecting off a surface (do NOT point it directly at the sun) you get a very nice rainbow of colors, showing that white light consists of all the colors (wavelengths) of visible light.

IMG_4998
View inside the spectrscope when looking at sun light reflecting off a window sill. (Colored numbers were added to the photo since the scale is blurry in the photo)

You can see the spectroscope analysis kit in action with the colored flames in this older post from my chemistry class.  I’ve definitely gotten my money’s worth out of this kit and it came with enough chemicals that I’l be able to keep using it for many more years since you only use a few crystals each time.  There are instructions on line for making simple spectroscopes at home but none of the ones I’ve made work as nice as this, and the fact that this at least a rough scale for measuring wavelength is a big plus.

At the end of class, I had the kids fill out this electromagnetic spectrum worksheet that is available for free from Cloey Holzman on the Teachers Pay Teachers website.

SaveSave

R2 Physics 22 – Electric Fields and Circuits

Students were asked to watch the following videos and read 10.3 Flashlights in How Things Work the Physics of Everyday Life.  We skipped over 10.2 Xerographic Copiers.

In class, we watched this video on tesla coils because one of the students brought in a small tesla coil that he had built when he was 8!

IMG_4867.jpg
Homemade tesla coil

For the lab we took a look at electric fields by pouring some mineral oil (non-conductive fluid) in a petri dish and sprinkling lettuce seeds on top.  We had pieces of a metal clothes hanger bent in different shapes to be our electrodes.  One electrode is grounded (touched by a student) and the fun fly stick is used to build up negative charge on the other electrode.  We placed a bit of aluminum foil over the end of the wire to collect more charge.  The styrofoam cups in the photos are just used to prop up the electrodes and keep them isolated. The two electrodes end up with opposite charge and the seeds will move around and align themselves to the electric field.  This is kind of similar to sprinkling iron filings over magnets to see magnetic fields.

IMG_4881

Students used the circular shape above and two straight electrodes.  They also moved them and observed the electric field getting stronger when they brought the metal electrodes closer together.  One group found the force was so strong that they could move one electrode across the petri dish by moving the other one.

IMG_4888I also brought out my snap circuits and let the students build circuits.

If you’re looking for one long video on electricity the Royal Institute has this one, Zap, Crackle and Pop: The Story of Electricity, which is full of nice demonstrations.

SF Physics 18 – Speed of Sound

We started class with the following videos on sonic booms, SONAR and echolocation.

We played around with the free app, SignalScope X by Faber Acoustical.    The app uses the microphone in your phone or iPad and displays the sound waves on the screen like an oscilloscope. Below is a waveform that I made by humming a note.  You could use this app to measure the period (T) of the wave, time between crests or troughs and then calculate the frequency (1/T).  For the wave shown the period is roughly 5ms (0.005s) and frequency = 1/0.005 = 200 Hz. We used it to look at sound waves produced by the tuning forks.  IMG_5087.png

While searching for labs  I found a video of the speed of sound lab that I did with the IMG_4898high school class, but they were using wider tubes and the resonance was much easier to hear, so I repeated that experiment with the middle school class using the boom whacker tubes and it worked much better. Since the tubes were so much wider we had to use big plastic containers to hold the water instead of graduated cylinders.  When you move the tube up and down with a tuning fork over the opening, you will hear the sound get louder when the length of the tube, L, is equal to 1/4 of the wavelength of the sound. Students found resonance (the length where the sound got louder) for four different frequencies (tuning forks) and calculated the speed of sound for each one ( speed = wavelength x frequency).  They all found values close to 330 m/s.

Here’s the video of tuning forks demonstration, the speed of sound demo is around 3:20.

SF Physics 17 – Field trip!

This slideshow requires JavaScript.

This week both my physics classes went to the Tech Museum in San Jose for a class on roller coasters and to check out the Body Worlds Decoded exhibit.  The class started with a short lecture on roller coasters with a lot of class participation and then students had 10 minutes to build a short roller coaster.  After some more discussion on roller coasters and energy the students were asked to build roller coasters with a loop!  If they succeeded  with time to spare they were given a challenge card (2 loops for example).  As you can see in the photos, this was done with pretty inexpensive equipment,  foam hose insulation cut in half for tracks and whatever building toys (tinker toys in this case) you might have, masking tape and a marble.  Classes like these at museums are great, I’ve never been disappointed.  The Tech Museum field trips are a great deal, only $5 per kid and chaperones were free, we got the 90 minute class, free IMAX film and got to wander around the museum afterwards.

The Body Worlds exhibit was pretty cool as well, may have to go back next year when we’re doing biology since I believe its going to become a permanent exhibit.

DSCF8225

Blog at WordPress.com.

Up ↑

HOLLYWOOD ( and all that )

hanging out and hanging on in life and the movies (listening to great music)

chemistryadventures

Learn from Yesterday, live for today, hope for tomorrow. The important thing is not stop questioning ~Albert Einstein

graph paper diaries

because some of us need a few more lines to keep everything straight

Evan's Space

Wonders of Physics

Gas station without pumps

musings on life as a university professor